Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Sheng Yang, Wen Gu, Jing Qian, Feng-Xian Gao and Shi-Ping Yan*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: yansp@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.029$
$w R$ factor $=0.079$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diazido(1,4,7-tribenzyl-1,4,7-triazacyclo-nonane- $\left.\kappa^{3} N\right)$ copper(II)

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3}\right)\right]$, the copper(II) atom is coordinated by five N atoms from the 1,4,7-tribenzyl-1,4,7-triazacyclononane ligand and the azide ions in a slightly distorted square-pyramidal geometry.

Comment

1,4,7-Triazacyclononane and its derivatives have attracted a great deal of attention in recent years due to their biological activities and their strong coordination abilities as multidentate ligands (Daly \& Martin, 2002). One of the derivatives, 1,4,7-tribenzyl-1,4,7-triazacyclononane (L), was synthesized by Thomas et al. (1990). We report here a copper(II) complex with L, namely $\mathrm{Cu}(L)\left(\mathrm{N}_{3}\right)_{2},(\mathrm{I})$.

As shown in Fig. 1, the Cu atom adopts a slightly distorted square-pyramidal geometry. The basal plane is composed of atoms N1, N3, N4, N7 and atom N2 atom occupies the apical position. The Cu 1 atom is displaced out of the basal plane by 0.105 L ligand are longer than those to the azide ions (Table 1). The value of τ as defined by Addison et al. (1984) is 0.134 [$\tau=$ $(\beta-\alpha) / 60=0$ and 1 for perfectly square-pyramidal and trigonal-bipyramidal geometries, respectively]; $\beta=\mathrm{N} 7-$ $\mathrm{Cu} 1-\mathrm{N} 1=176.47$ (7) and $\alpha=\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 3=168.40$ (8), indicating a slight distortion from a square-pyramidal geometry. The azide ions are almost linear.

Experimental

A solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}(0.047 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml})$ was added to a solution of $L(0.040 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 30 min to afford a clear deep-blue solution. A solution of $\mathrm{NaN}_{3}(0.013 \mathrm{~g}, 0.2 \mathrm{mmol})$ in water (5 ml) was then slowly added dropwise. The mixture was continuously stirred for 2 h and filtered to remove any insoluble particles. Deep blue crystals suitable for X-ray analysis were obtained by slow evaporation of the filtrate. Analysis, calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{CuN}_{9}$: C 59.27, H 6.08, N 23.04%; found: C $59.52, \mathrm{H} 6.25, \mathrm{~N}$ 22.96%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3421 (m), 2053 ($\left.s\right), 1636(w), 1355$ (w).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3}\right)\right]$
$M_{r}=547.16$
Monoclinic, $P 2_{b} / n$
$a=14.105$ (7) A
$b=8.999$ (5) \AA
$c=21.603$ (11) \AA
$\beta=100.470(7)^{\circ}$
$V=2696(2) \AA^{3}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scan
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.728, T_{\text {max }}=0.845$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.079$
$S=1.02$
4753 reflections
334 parameters
H -atom parameters constrained

$Z=4$

$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.84 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.28 \times 0.22 \times 0.20 \mathrm{~mm}$

14088 measured reflections 4753 independent reflections 3883 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0434 P)^{2}\right. \\
& \quad+0.5508 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 4$	$1.9810(19)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.1165(16)$
$\mathrm{Cu} 1-\mathrm{N} 7$	$1.9844(19)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.2490(18)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.1045(17)$		
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 7$	$93.18(9)$	$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 2$	$106.05(8)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$89.63(8)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 2$	$97.56(8)$
$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 1$	$176.47(7)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$83.69(6)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 3$	$168.40(8)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$83.02(6)$
$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 3$	$92.75(7)$	$\mathrm{N} 6-\mathrm{N} 5-\mathrm{N} 4$	$177.0(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$84.11(7)$	$\mathrm{N} 7-\mathrm{N} 8-\mathrm{N} 9$	$174.6(2)$

H atoms were positioned geometrically and refined as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA(\mathrm{CH})$ and $0.97 \AA\left(\mathrm{CH}_{2}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

This work was supported by the National Natural Science Foundation of China (20331020).

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (2001). SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Daly, R. I. \& Martin, L. L. (2002). Inorg. Chem. Commun. 5, 777-781.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Thomas, B., Della, V., Wieghardt, K. \& Roland, B. (1990). Inorg. Chem. 29, 1736-1741.

[^0]: © 2006 International Union of Crystallography All rights reserved

